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Abstract
Information about how different conditions affect the course of sorption is variously scattered and needs to be consolidated. 
The paper primarily focuses on identifying the optimal sorption conditions for acid and neutral mine drainages. In this 
review, key parameters were assessed, including temperature, pH level, sorbent dose, initial metal concentrations, and sorp-
tion duration. This overview also includes a comparison of the advantages and disadvantages of selected types of sorbents. 
The sorption of many metals tends to be optimal at circumneutral pH values. The adsorptive capacity decreases with an 
increase in temperature for exothermic processes, whereas it increases in the case of an endothermic one. Increasing the 
initial concentration has a positive effect on adsorption until the sorbent is fully saturated, leading to a plateau in adsorption 
capacity. The knowledge gained from this research extends the spectrum of the potential sorption applications, especially in 
the processes of recovering the metals and sorbents by desorption.

Keywords  Mining wastewater · Optimal conditions · Efficiency · Water purification · Mine drainage

Introduction

Mine effluents, also referred to as mine drainage, can con-
tain substances such as cyanide and various metals that have 
serious potential health and environmental consequences 
(Azapagic 2004). Acid mine drainage (AMD) production 
typically, but not exclusively, occurs in rocks containing iron 
sulphide. Although this process occurs naturally, mining can 
promote the generation of AMD simply by increasing the 

amount of sulphide exposed to oxygen and water (Akcil and 
Koldas 2006). In many cases, due to the neutralizing ability 
of waste minerals or human intervention, such as the spread-
ing of limestone to precipitate metals, drainage may have cir-
cumneutral pH values (4.5–8.5) and is referred to as neutral 
mine drainage (NMD). NMD can also cause environmental 
problems in mining environments because many metals and 
metalloids can remain soluble at alkaline pH under appropri-
ate redox conditions (Banks et al. 1997; Lindsay et al. 2009).

Currently, the main methods for the treatment of waste-
water containing metal ions include chemical precipitation, 
electrochemical methods, reverse osmosis, ion exchange, 
and adsorption (Johnson and Hallberg 2005; Wang et al. 
2022). Adsorption is often used to remove metals from mine 
water, especially when natural and inexpensive adsorbent 
materials are available in large quantities or certain waste 
products from industrial or agricultural activities can serve 
as inexpensive sorbents (Bailey et  al. 1999). Examples 
include dead biomass, blast furnace slag, fly ash, clay, tree 
bark, tea leaves, and natural zeolite (Bailey et al. 1999; Bhat-
tacharyya and Gupta 2006; Günay et al. 2007). These can be 
combined to obtain the desired adsorption properties (Crini 
and Morcellet 2002). Some of the more cost effective natural 
and renewable sorbents are chitosan, tea leaves, brown coal, 

However, there is currently no survey developed to monitor the 
effect of sorption conditions on metal removal from the water 
system. Due to the lack of information in this field, we have focused 
our review of the sorption conditions in terms of temperature, pH, 
inlet concentration as well as sorbent availability in this review 
article.
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sewage sludge, agricultural waste, and biomass (Ahmaruz-
zaman 2008; Kalderis et al. 2008; Munagapati et al. 2010). 
Some studies have focussed on the sorption of Hg from 
mine effluents (e.g. Bae et al. 2003; Fiaizullina et al. 2017; 
Gómez-Giménez et al. 2017).

The sorption properties of adsorbents, methods to deter-
mine the sorption properties of metal ions, and sorption 
mechanisms (batch sorption techniques and spectroscopic 
techniques, such as XPS, FTIR, EXAFS, and ATR-IR) have 
been addressed (Zhao et al. 2010). Also, the physical basis 
of the sorption isotherm, with a detailed description of the 
experimental methods and various empirical or mechanistic 
models to obtain the sorption isotherm have been summa-
rized (Limousin et al. 2007). Theoretical models describing 
the kinetics of pollutant adsorption was reviewed (Plazinski 
et al. 2009), as have sorption models (Basu et al. 2006). 
In addition, the influence of temperature on sorption equi-
librium and sorption kinetics for organic micropollutants 
was previously compiled (Hulscher and Cornelissen 1996). 
However, there is no published survey on the effect of other 
sorption conditions on metal removal, so this review is an 
effort to unify the available scientific information from the 
field on the influence of conditions on the sorption process.

Description and Division of Sorbents

Sorption of metals under laboratory conditions is currently 
applied using natural sorbents, natural biosorbents (Zhao 
et al. 2010), waste materials (Apak et al. 1998; Koshy and 
Singh 2016) or modified sorbents. In many cases, these are 
innovative ways of using sorbents (Hagarová and Nemček 
2021; Pereira et al. 2019).

Natural Non‑biological Sorbents

Natural sorbents include bentonites and zeolites (Malamis 
and Katsou 2013). In addition to these commonly used sor-
bents, vermiculite can also be used. Vermiculite is a type 
of clay that is usually found in nature in the form of mag-
nesium. It consists of two layers of silicon tetrahedra, in 
which silicon is partially replaced by aluminium, and a layer 
of hydroxy (-OH) groups and magnesium ions forming a 
strongly bonded mica layer (Fleischer 1975; Malamis and 
Katsou 2013).

Currently, the adsorption of pollutants by natural materials 
is widely reported, such as diatomite (Shabani et al. 2014; 
Yurak et al. 2021), glauconite (Flieger et al. 2020), perlite 
(Ghassabzadeh et al. 2010), red mud (Lopes et al. 2013), 
zeolite (Egashira et al. 2012), and clay (Sheikhhosseini et al. 
2013). These adsorbents are environmentally friendly and 
most of them can be regenerated or used in various products 
and are commonly used for synthetic wastewater treatment 

(Shabani et al. 2014). In addition to the above sorbents, a 
dolomite sorbent was prepared for the metals sorption (Ivanets 
et al. 2016). Several natural sorbents including kaolinite were 
described for wastewater treatment (Adebowale et al. 2006), 
sludge (Genç-Fuhrman et al. 2004), diatomite (Al-Degs et al. 
2001; Li et al. 2009) and laterite (Yu et al. 2008). The sorp-
tion mechanism of natural non-biosorbents and biosorbents is 
shown in Figs. 1 and 2.

Conditions for Sorption Processes by Natural 
Non‑biological Sorbents

In some cases, the pH of the solutions was adjusted with acids 
and hydroxides during the experiments. Tables 1, 2 and 3 focus 
on the sorption of potentially toxic elements from wastewater 
and artificially produced aqueous solutions. The aqueous solu-
tions were prepared by the addition of a salt containing the 
metal of interest. The sorption conditions—pH, temperature, 
inlet concentration, sorbent addition—are reported depending 
on the embedding experiment.

Natural and Waste Biosorbents

In recent years, many economically available biosorption 
materials have been used and have proven to be promising 
methods for metal removal. The major benefits of biosorbents 
for metal sorption are low operating costs, high efficiency, and 
minimal generation of toxic sludge (Bailey et al. 1999; Kra-
tochvil and Volesky 1998).

Based on the results of previous studies, it is possible to use 
biosorbents such as tea waste (Orhan and Büyükgüngör 1993), 
coffee husks (Quyen et al. 2021), orange peel (Altunkaynak 
et al. 2022), banana peel, potato peel (Nathan et al. 2021), 
pomegranate peel, pineapple peel (Turkmen Koc et al. 2021), 
coconut, peanut, almond, walnut shells (Das et al. 2020; Kali 
et al. 2024), mango and guava bark (Krishnani et al. 2021), 
and many other agricultural by-products. Thus, the waste 
streams of the agricultural sector is one of the major sources 
of natural biosorbents. Composted manure has also been used 
as a biosorbent (Zhang 2011). In addition, waste digested acti-
vated sludge from wastewater treatment plants (Appels et al. 
2008) and industrial waste such as ladle furnace slag, fly ash 
(Mohammed et al. 2017), and steel slag (Pfeifer et al. 2021) 
can be used as low-cost adsorption materials for the sorption of 
metals from mine effluents. The sorption mechanism of waste 
biosorbents is shown in Fig. 3.
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Fig. 1   Graphical scheme of metal sorption with the use of natural non-biological sorbents

Fig. 2   Graphical scheme of metal sorption with the use of biosorbents
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Conditions for Sorption Processes by Waste 
Sorbents

Advantages and Disadvantages of Using Sorbents

Effective removal of PTEs has been reported using many 
different sorbents. The porosity of the adsorbent, its sur-
face exchange capacity, and the presence of several func-
tional groups play a major role in sorption. The adsorbent 
dose, pH, temperature, the presence of other cations in the 
water or the initial concentration and the type of metal to 
be sorbed also affect the adsorption efficiency (Bilal et al. 
2021). The advantages and disadvantages of using differ-
ent types of sorbents are summarized in Table 4.

Nanomaterials (NMs) represent another group of sor-
bents that could be used in the adsorption of potentially 
toxic elements from mine drainage or waste water. These 
materials have at least one dimension of 100 nm or less. 
Their very high adsorption efficiency is primarily linked 
to large specific surface area and surface multifunctional-
ity to react chemically and bind specific target ions easily 
(Kegl et al. 2020). Their other advantageous characteris-
tics are extreme reactiveness, good mechanical stability, 
powerful solution mobility, dispersibility, hydrophilicity, 
and hydrophobicity (Saleem and Zaidi 2020). These mate-
rials can be divided into several groups: (a) carbon-based 
nanomaterials like graphene (Ahmad et  al. 2020); (b) 
zeolite nanoparticles (Tahoon et al. 2020); (c) polymer-
based (e.g. cellulose- or chitosan-based) nanomaterials 
(Sayyed et al. 2021); (d) magnetic nanomaterials like iron 
oxide (Leonel et al. 2021); (e) metal oxides and metal-
based nanomaterials (Bashir et al. 2023); (f) silica-based 
nanomaterials (Ethaib et al. 2022). There is a need for 
further research, not only in batch experiments, but also 
in industrial-scaled experiments.

From the point of view of costs, it is difficult to compare 
individual types of sorbents, as this review article focuses 
primarily on the sorption of metals using natural and waste 
sorbents, which are characterized by low costs and their 
affordability compared to commercial sorbents, which are 
not addressed in this review. Of course, various chemi-
cal modifications and preliminary treatments of sorbents 
are considered. Instead, we have focused on the efficiency 
of the sorption process. The repeated use of a sorbent is 
important. Natural non-biological sorbents can be reused 
after desorption, while natural and waste biosorbents can-
not be used for a long time due to their own decomposi-
tion. In addition, the risk of using waste non-biological 
sorbents is risky because of the potential release of other 
metals and other potentially toxic compounds that would 
have to be subsequently removed from the aqueous solu-
tion. Natural and waste biosorbents can be highly efficient 
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but, as can be seen from Table 4, the efficiency of these 
sorbents is not directly proportional to the dose of sorbent, 
which can cause certain complications when searching for 
the optimal dose of sorbent.

Evaluation

The Influence of pH

In previous studies, Cu sorption was evaluated at pH 2–5. 
The lowest sorption level was in an acidic solution (pH 2) 
using zeolite (Ryu et al. 2019). By increasing the pH from 2 
to 3, the sorption of copper increased to 98.16% (Wulandari 
et al. 2020). In general, it appears that the sorption of copper 
is more favourable at moderately low pH values, typically 
in the range from pH 4 to 6 (Balintova et al. 2012, 2014; 
Gupta et al. 2018). This applies especially when using waste 
biosorbents (Feng et al. 2009; Mohammed et al. 2017).

Sorption of Fe depends on the oxidation state of the 
Fe ions. The sorption of Fe(II) ions tends to be optimal at 
higher pH values, typically from neutral to slightly alka-
line (pH 6 to 8). At these pH levels, the surface charge of 
most sorbent materials becomes more negatively charged, 
which facilitates the attraction between the positively 
charged Fe(II) ions and the sorbent surface. This was 
confirmed by several studies when Fe(II) was sorbed on 

waste biosorbents and non-biological sorbents (Moham-
med et al. 2017; Núñez-Gómez et al. 2020; Ramutshatsha-
Makhwedzha et al. 2023). The sorption of Fe(III) ions 
is usually optimal at lower pH values. Adsorption effec-
tiveness above 90% was observed for pH values below 
5 (Masindi et al. 2015, 2017). However, adsorption of 
Fe(III) ions depends on several factors, like the sorbent 
material (materials with negatively charged surfaces, 
such as certain types of clays or metal oxides, may exhibit 
higher adsorption capacities for Fe(III) ions at lower pH 
values) (Kéri et al. 2020), competing ions (the presence of 
high concentrations of carbonate or phosphate ions may 
decrease Fe(III) adsorption at certain pH ranges due to the 
formation of soluble complexes; Senn et al. 2015), redox 
potential (at higher pH values, the reduction of Fe(III) to 
Fe(II) may occur more readily, affecting the speciation and 
adsorption behaviour of the Fe ions).

The oxidation state of Cr plays a key role in its adsorp-
tion. The sorption of trivalent chromium ions (Cr(III)) 
tends to be optimal from pH 4 to 7 (Arim et al. 2018; 
Batool et al. 2019). The sorption of hexavalent chromium 
ions (Cr(VI)) is more complex and can depend on the spe-
cific sorbent material and solution conditions. It is known 
that Cr(VI) can exist in various forms in solution, such as 
chromate (CrO₄2⁻) or dichromate (Cr₂O₇2⁻), and its sorp-
tive behaviour can be influenced by factors such as pH, 
redox potential, and the presence of competing ions (Fenti 

Fig. 3   Graphical scheme of metal sorption with the use of waste biosorbents
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et al. 2020). It was confirmed that Cr(VI) sorption is more 
likely in acidic conditions (Cimino et al. 2000; Malkoc 
et al. 2006).

The sorption of other metals (Pb, Zn, Mn, As, Ni) tends 
to be optimal at slightly acidic to neutral pH values, from pH 
5 to 7. However, the sorption depends on the conditions like 
the metal being sorbed, solution conditions, the presence 
of competitive ions, and metal speciation. In some cases, 
Pb sorption can also occur effectively at higher or lower 
pH values depending on the chemistry of the sorbent and 
the solution. Adsorption onto zeolite was effective (> 99%) 
at a pH ≈ 2.5 (Olegario-Sanchez and Pelicano 2017). On 
the other hand, adsorption onto waste biosorbents was more 
effective at pH values of 5–6 (Naiya et al. 2009; Pehlivan 
et al. 2009a; Ramutshatsha-Makhwedzha et al. 2023). The 
adsorption effectiveness of Zn onto zeolite was < 50% at a 
pH of 2 (Ryu et al. 2019), but more effective when using 
hazelnut shell (Cimino et al. 2000). Determining the optimal 
pH for zinc sorption often involves experimentation with the 
sorbent material and solution conditions. The same applies 
to Mn adsorption. However, manganese can exist in various 
oxidation states (e.g., Mn(II) and Mn(IV)), and its specia-
tion can change with pH. For example, at lower pH values, 
manganese tends to be present as Mn(II), while at higher pH 
values, it can form hydrolysis species such as Mn(OH)₄2⁻ 
(Ilton et al. 2016). Mn(II) can be effectively sorbed at lower 
pH values on natural non-biological sorbents (Masindi et al. 
2017; Varvara et al. 2013). The adsorption of Cd seems to be 
more effective with increasing pH (Mohammed et al. 2017; 
Ramutshatsha-Makhwedzha et al. 2023; Tunali Akar et al. 
2016). Adsorption of Ni also increased with higher pH val-
ues (Enslin et al. 2010; Gitari 2014). Another experimental 
study also confirmed the effect of increasing pH on better 
precipitation of metals (Liehr 1995).

The speciation of As in solution is crucial because arsen-
ite (As(III)) and arsenate (As(V)) have different affinities 
for sorbent materials and can exhibit different optimal pH 
ranges for sorption. Arsenate tends to sorb more strongly 
under conditions favouring the formation of positively 
charged species, while arsenite may sorb more readily under 
the conditions favouring the formation of negatively charged 
species (Ungureanu et al. 2015). For most sorbents, a neutral 
or slightly acidic pH (5–7) is the most optimal (Carrillo-
González et al. 2022; Mohammed et al. 2017).

According to Verma et al. (2018), for most of the ele-
ments with an oxidation state of + 2, such as Co, Ni, Zn, 
Ba, and Cd (but not Hg), a general trend of enhancement 
in removal was observed with an increased pH. However, 
for other elements such as V, As, Mo, Ag, and Bi, which 
have oxidation states other than + 2, no definite pattern was 
observed. Precipitation of Ba and As using this method 
was negligible at all five pH values (2 acidic, 2 basic, and 1 
neutral). But, in general, the precipitation and recovery of 

elements generally depend strongly on the pH of the water 
sample.

The leaching behaviour of iron and calcium at different 
pH conditions has a profound effect on the pH-dependent 
mobilities of most of the trace elements present in the inves-
tigated materials. In contrast, the leaching of sodium, potas-
sium, and chloride from slag, particularly in the pH range 
of 4–12, is pH independent and therefore does not affect 
the mobilities of potentially toxic elements. Hierro et al. 
(2014) showed that increasing the pH causes enhance metal 
removal;. as pH increases, the concentrations of dissolved 
ore-associated elements are attenuated.

Thus, the pH of the solution is a very important factor 
since it can affect both the chemistry of the adsorbate and 
adsorbent. The charges of the adsorbate and adsorbent rey 
on the pH solution. With the rise of pH from 2 to 5.5, the 
sorptive capacity of orange peel rose from 24.62 to 44.42%. 
The highest adsorption was accomplished at a pH solution 
of 5.5. At lower pH values, the Cd(II) ion elimination is 
subdued by web of positive charges of the orange peel and 
the rivalry that exists between Cd(II) ions and the H+ in 
solution. At an elevated pH, the negative charge network on 
orange peel increases due to the deprotonation of the binding 
sites (Akinhanmi et al. 2020). Metal binding is strongly pH 
dependent with more metal cations bound at higher pH; the 
optimum initial pH was found to be 6, where the maximum 
uptake of metal ions took place. Metal binding by products 
was reduced at low pH values due to the increasing competi-
tion of protons for the same binding sites (Krishnani et al. 
2021).

The Influence of Temperature

Solution temperature is also an essential parameter in the 
adsorption process. In general, an initial increase in tem-
perature reduces the solution viscosity, which enhances the 
diffusion rate of the adsorbate molecules across the adsor-
bent surface, resulting in an elevated adsorption efficiency. 
Subsequent changes in temperature can affect the adsorp-
tion process in two different ways, depending on whether 
the process is exothermic or endothermic. The adsorptive 
capacity decreases with an increase in the temperature of 
an exothermic process whereas it increases in the case of an 
endothermic one (Wadhawan et al. 2020).

The optimal temperature for sorption can vary depending 
on the specific sorbent material and solution conditions. In 
general, room temperature (≈ 20–25 °C) is often used in 
laboratory experiments as it represents a practical and con-
venient temperature for conducting sorption studies. How-
ever, if the sorption process is exothermic (heat-releasing) 
in nature, lower temperatures may enhance sorption kinetics.

According to analysed studies, the influence of tempera-
ture on the efficiency of the process is not clearly confirmed. 
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For some waste biosorbents, higher temperatures (up to 
60 °C) promoted adsorption efficiency (Malkoc et al. 2006). 
For example, sorption of As was 99% efficient at an ele-
vated temperature of 23–53 °C, compared to an efficiency 
of 75% at a temperature of 22–27 °C (Nekhunguni et al. 
2017). On the other hand, a study of sorption of Cu and Zn 
onto bentonite and zeolite confirmed that a reduced tempera-
ture (10 °C) positively affected the sorption efficiency and 
increased the adsorption capacity of each sorbent’s mon-
olayer (Prepilková et al. 2024). Temperature had an adverse 
effect on Pb sorption, with an elevated temperature (25 °C) 
reducing the process efficiency to 63%, while at 18–22 °C, 
it was up to 99% efficient (Olegario-Sanchez and Pelicano 
2017; Oter and Akcay 2007).

It's important to note that higher temperatures can also 
change the solution chemistry, enhancing the solubility of 
certain compounds or alterations in the speciation of metal 
ions. Therefore, the optimal temperature for sorption should 
be determined experimentally for each specific system to 
achieve the desired sorption efficiency while considering 
other factors such as energy costs and practical feasibility.

The Effect of Initial Concentration

Generally, increasing the initial concentration has a positive 
effect at adsorption until the sorbent is fully saturated, when 
all the active sites on the sorbent material are occupied by 
metal ions, leading to a plateau in adsorption capacity. Initial 
concentrations vary between metals and sorbents.

The initial metal concentration during Cu sorption 
clearly influenced the sorption outcome. At concentrations 
of 50 mg/L and above, efficiency values from 89 to 99% 
were observed for both zeolite and bentonite (Balintova 
et al. 2012). However, the removal efficiencies at an initial 
Cu(II) concentration of 9 mg/L only ranged from 17 to 29% 
(Ryu et al. 2019). Similar results were also recorded for Fe 
sorption.

The Effect of Sorption Time

The contact time depends on the initial concentration of 
PTEs in the solution, the availability of active sorbent sur-
face area (sorbents typically accept specifically sized mol-
ecules of various metals), and the sorbent dosage. Usually, 
adsorption occurs rapidly at first, slows down as equilibrium 
is approached, and eventually reaches a plateau when the 
adsorption sites are saturated (Soliman and Moustafa 2020).

Sorption of Pb was carried out by a zeolite (heulandite) 
in 6 h of contact time and 99% efficiency (Olegario-Sanchez 
and Pelicano 2017) and by another zeolite (clinoptilolite) 
with 24 h of contact time with 63.5% efficiency (Oter and 
Akcay 2007). This may indicate decreased efficiency with 
increased contact time and possibly a reverse desorption 

process. The contact time of Mn with zeolite was recorded 
at 6 h with 100% metal removal level (Motsi 2010), while 
contact time with bentonite was 0.5 h with an efficiency of 
up to 100% (Masindi et al. 2015).

The contact time differed from one adsorbent to another, 
and this may be due to one or more of the following: (1) 
changes in the chemical structure of the adsorbent, (2) the 
adsorbent surface area, (3) the availability of surface-active 
sites (4) adsorption binding constants of the adsorbent, and 
(5) differences in the ionic size of the metal ions (Soliman 
and Moustafa 2020). Understanding and optimizing the 
kinetics of adsorption are crucial for designing efficient and 
effective adsorption processes for metal removal.

The initial sorption phase is followed by a slower rate 
of ion removal. This is directly related to the availability of 
binding sites on the surface, which are rapidly occupied by 
the ions in the initial phase. As the reaction approaches equi-
librium, sorption slows and sorption percentage decreases 
due to a decrease in the ion concentration in the solution. 
The ion with the shortest equilibrium time and the highest 
sorption percentage was Cd, followed by Cu, Hg, and Ni 
(Nathan et al. 2021).

The Advantages and Disadvantages of Using 
Selected Sorbents

Waste sorbents have proven to be the most economically 
suitable for use in the sorption process and their use pro-
motes a circular economy. However, waste sorbents typi-
cally require some modification to increase their adsorp-
tive capacity before they can be used, and biosorbents and 
natural non-biological sorbents are also characterised by low 
operating costs.

Studies show that natural non-biological sorbents and 
natural sorbents are amenable to modification. For waste 
sorbents, a significant negative is the possible content of 
other potentially toxic substances that may be released back 
into the aquatic ecosystem during sorption.

Biomass, as a sorbent, cannot be used in the long term 
due to its gradual decomposition. Although regeneration is 
possible in the sorption of natural non-biological sorbents by 
the desorption of selected metals, these are non-renewable 
energy sources. One of the most important factors is the 
efficiency of sorption. However, high sorption efficiencies 
were observed even at low initial concentrations.

Waste sorbents are continuously produced, unlike natural 
ones. Non-biological waste sorbents are also available in 
large quantities.

The Interdependence of the Assessed Parameters

The pH of the environment can dramatically affect adsorp-
tion. At low pH values, a low percentage of absorbed metal 
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is generally observed, which is attributed to the significant 
competitive influence of hydrogen ions and the disrupted 
structure of the adsorbent. A low pH value also increases 
the mobility and accessibility of PTEs and the content of 
dissolved substances. Therefore, most sorption studies are 
performed in the range of pH 4 to 8. The behaviour of metal-
loids such as arsenic differs significantly from that of PTEs, 
which are mobile mainly at low pH values, while arsenic 
is mobile at a wide range of pH values—from extremely 
acidic to alkaline. The change in pH mainly affects the time 
of sorption, and it is not directly related to other monitored 
parameters.

The effect of temperature is related to the thermal course 
of sorption. If the adsorption reaction is exothermic, the 
adsorption capacity of the sorbent generally decreases, while 
the adsorption capacity increases if the adsorption reaction 
is endothermic. The temperature of the process is clearly 
related to the type of the sorbent.

Exothermic sorption and reduced adsorptive capacity 
are negatives in experiments with increasing initial metal 
concentration, which means that a reduced temperature is 
suitable for increasing the adsorptive capacity of the sorbent 
with increased metal concentrations at the beginning of the 
experiments. On the other hand, it is followed by a decrease 
in the overall efficiency of metal removal.

The rate of the adsorption process is related to several 
parameters, including the initial concentration of the metal 
solution, the type and treatment of the sorbent, the mecha-
nism of sorption and the temperature. Alkali-treated sorb-
ents affect sorption by a chemical mechanism with increased 
temperature and increased overall metal removal efficiency, 
and the sorption time is shortened, so that equilibrium is 
achieved much faster. The adsorption rate is also related to 
the type of sorbed compound, its size (the metal ion itself in 
an acidic medium is smaller in size than the oxide hydrox-
ide compound at a higher pH), and also from the charge of 
the sorbed substance. The type of sorbent determines the 
availability of active centers on the surface of the sorbent. 
Their amount is related to the concentration of the sorbed 
substance and thus also to the time of the ongoing adsorp-
tion process. Adsorption usually proceeds quickly at first and 
then slows down as equilibrium is approached. This is due 
to the availability of free binding sites and a decrease in the 
concentration of dissolved ions.

Conclusion

Natural non-biological sorbents can be physically and 
chemically modified to improve sorption efficiency. Waste 
sorbents have achieved high efficiencies over a wide pH 
range and are generally economically favoured, but typi-
cally need to be modified to improve their sorption capacity. 

Waste non-biological sorbents are typically very efficient 
at low temperatures. In addition, as with other sorbents, an 
increase in the input metal concentrations increased the rate 
of adsorption.

Biomass cannot be used for long time periods due to its 
gradual decomposition. While the sorption of natural non-
biological sorbents may allow the recovery of selected met-
als, it must be noted that natural non-biological sorbents are 
non-renewable energy sources. Among the waste biosorb-
ents, biomass ash proved to be the most effective for the 
sorption of PTEs.

Metal sorption is an effective method for the purification 
of mine effluents. However, the sorbed metals are subse-
quently contained in the sorbents. Therefore, it is important 
to direct research not only towards the purification of waste 
effluents, but also towards the recovery of these metals by 
desorption processes. This review broadens the spectrum 
in the field of obtaining metals from sorbents by improving 
the understanding of the influence of different conditions on 
metal sorption. Just as it is possible to support the sorption 
of metals by various sorbents by changing the conditions, it 
is also possible to support their recovery, by desorption, by 
reversing the conditions.
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